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By the continuity of G,-‘, 

lim x’(F-‘-G,-‘)x=x’(F-‘-G-‘)x>O 
C-+0 

and F - ’ - G - ’ is nonnegative definite. 
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Nonlinear Systems Analysis with Non-Gaussian 
White Stimuli: General Basis Functionals and 

Kernels 

STANLEY KLEIN AND SYOZO YASUI, MEMBER, IEEE 

Ahmet-The Wiener-Lee-Schetzen sckeme of using Gaussian white 
noise to test a nonlinear dynamical system is extended in two ways. 1) An 
arbhmry non-<;aussiao white Mdse. stationary signtd can be nsed as the 
test stimdus. 2) An arbitrary fun&on of this stlmuhs can then be used as 
theennlyzingfunetionforcrosscorrelatingwiththeresponsetoobtainthe 
kernels cbamdrizing the system. Closed form expressions are given for 
the genemlized orthogonal b&s functions. The generalized kernels are 
expanded in term of Volterra kernels and Wiener kernels. The expansion 
coefficients are closely related to tbe cumula~~ts of the stimulus probabilfty 
distribution. ‘Ilwe results are applied to the special case of a Gaussiaa 
stimdus and a three-level analysis function. For this case a detailed 
analysis is made of the magnitude of the deviation of tbe kernels obtained 
witb the ternary tnmcation as comfwed to tke Wiener kernels obtained by 
cross correlating with the same Gaw&o as was used for the stimulus. The 
deviations are foand to be quite small. 

A nonlinear analytic system can be described through a Volt- 
erra functional expansion [ 11. Wiener [2] facilitated the practical 
usefulness of the functional expansion by introducing a set of 
orthogonal functions which completely characterize the system. 
Wiener’s functionals and their associated kernels are constructed 
with respect to a Gaussian white noise input. Lee and Schetzen 
[3] showed how the various Wiener kernels could be measured 
by cross correlating the system’s response with moments of the 
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Gaussian noise input. The Wiener-Lee-Schetzen white noise 
method has been extensively applied to biological systems [4]. 

The purpose of this paper is twofold. First a formalism will be 
developed to handle the most general white noise test stimulus. 
There have already been several efforts to extend Wiener’s 
scheme to non-Gaussian stimuli [4]-[ 131. However, these authors 
do not clarify how the kernels obtained with non-Gaussian 
stimuli are related to the basic Volterra and Wiener kernels. 
Several of these authors [8], [ 1 l] are interested in the Cameron- 
Martin expansion rather than the Wiener expansion. Our study 
is unique in its focus upon the relationship between Wiener-like 
expansions. The simplicity of the leading terms in the expansion 
relating non-Gaussian kernels to the Gaussian (Wiener) kernels 
(see (20)) may help remove the stigma against using non-Gaus- 
Sian stimuli. 

A second purpose of this paper is to consider the case in 
which the output is cross correlated not with the stimulus, but 
with a nonlinear function of the stimulus. This case commonly 
occurs in practice since no stimulator is perfectly linear. The 
intended stimulus (used for cross correlation) may be a true 
Gaussian, for example, but the actual stimulus will be a trun- 
cated Gaussian due to physical limits on the upper and lower 
stimulus levels. It is shown here how the measured kernels 
depend upon the stimulus function (the actual input to the 
system) and upon the analysis function (used for cross correlat- 
ing with the system’s output). The use of an analysis function 
which differs from the stimulus function may furthermore be 
useful when rapid real-time calculations of higher order kernels 
are desired. For example, consider the real-time evaluation of a 
50 X 50 element second-order kernel when the sampling time is 5 
ms. This calculation requires at least one multiplication every 4 
p. Present computers are too slow. Replacing the Gaussian 
stimulus with its binary or ternary quantization allows all multi- 
plications to be replaced by much more rapid additions and 
subtractions. 

Since the signal used for cross correlation to obtain the kernel 
estimates may differ from the stimulus signal, there is the danger 
of losing the orthogonality of the expansion. We shall develop a 
new set of “dual-space” kernels and “dual-space” functionals 
which preserve orthogonality. These dual-space kernels will be 
expanded in terms of Volterra kernels and then related to 
Wiener kernels. The last section will consider the case where a 
Gaussian stimulus is used for testing and the ternary function is 
used for rapid computation. Factors contributing to the dif- 
ferences between the dual-space kernels and the Wiener kernels 
will be explored. It will be shown that the first- and second-order 
ternary kernels differ minimally from Wiener kernels. 

ORTHONORHAL DUAL-BASIS F~JNCTIONS 

The output of an analytic time-invariant stable system, y(t), 
can be related to its input x(t) through the Volterra functional 
expansion [ 11: 

u(t) = n7j ml(~r . ..T.) ii- x(t-Ti). (1) 
i-l 

Several studies have examined the validity and convergence of 
the Volterra expansion for both deterministic and stochastic 
inputs [ 13]-[ 151. In our formulation the values of the input and 
output are sampled every 6 s, so the time variables ri and t are 
integers rather than continuous variables. Quantized rather than 
continuous time intervals are used, because they avoid the 
singularities associated with stochastic integrals [14] and they 
allow attention to be focused on diagonal kernel elements which 
are important for the results of this correspondence. Further- 
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more, this is the formulation which is implemented on a digital 
computer. 

If n, of the time intervals 7i in (1) are equal, then the power 
function x”(t- TV) appears in the expansion. Instead of the 
Volterra expansion with xq(t- 7i) as the basis functions, it is 
possible to introduce an orthogonal basis X+(t - ri): 

v(t) = EYn(O II 

y”(t)= 2 8”h”(71.. * 7,) I? Xq.(f-Ti) (2) 3 i-1 

where ni is the number of repetitions of 7i in h,,, n = Zf, ini, and 
where k is the number of time intervals 7i which are different. 
The summation is over all nonnegative values of 7. 

The basis functions X,(t) can be constructed to be orthonor- 
ma1 to a dual set of basis functions V,(t) by a Gram-Schmidt 
orthogonalization procedure. The basis functions can be written 
as 

X,(t)=det [M,,(u,w)l/det [ ~,-~M,-,(u,w) ] 
V,(t)=det [M,(w,u)l/det [ u,Jf,(w,u) ] 

(3) 

(4) 

where a bar over a quantity is the expectation operator or the 
time average of that quantity assuming ergodicity. The functions 
q(t) and wi(t) are linear or nonlinear zero-mem% time-in- 
variant functions of x(t) which should satisfy u,w,#O and 
I#Y$“l< co. The matrix M,(u,w) which assures orthogonality is 
given by 

M”(U, w) = 

1 6 **- u, 

6 WlUl ... WIU” L................ 
W ”--1 wn-]I+ .** %-I% 

1 u,(t) ... un(f) 

(5) 

The matrix M(w,u) is the same as M(u, w) but with u and w 
exchanged throughout. 

The basis function given by (3) and (5) were originally pro- 
posed for the special case 4= Wi by Barrett [6]. We shall now 
demonstrate that also for the general case ui#wi the basis 
functions (3)-(5) satisfy the orthonoxmality condition 

X.(t) I/;r,(t +A) = S,Ji, (6) 
where 13, = 1 for i = j, and 8, = 0 for i #j. 

The expectation vanishes for A+0 because of the “whiteness” 
of the input stimulus. The whiteness condition means 

(x(t)-Z)(x(t+A)-z) -0, for A#O. 

This condition implies 

(X,(t)-x)( V,,Jt+A)- Es) =O, for A#O. 

The factors yn and & vanish (except for thEtrivia case n = n’ = 
0) since the fi+ and last row of the matrix M,, are equal, thereby 
causing det M, to vanish in (3) and (4). 

We now examine the case A = 0. In order to prove orthogonal- 
ity for n <n’, X,,(t) can be expanded: 

For n’ <n, V,,(t) can be expanded: 

i’=O 

However, a= 0 for i <n’ (and G= 0 for i’ <n) since the 
expectation operator makes the bottom row of the determinant 
(5) equal to a preceding row, causing the determinant to vanish. 

TherefosE=O for nfn’. For the case n = n’ we have 
x,V,= u,, V,, because of the normalization factor in (3), and 
u,, V, = 1 because of the normalization factor in (4). The determi- 
nant formalism is thus seen to be a natural method for enforcing 
orthonormality using general basis functions. 

Throughout this paper the functions u, and w,, will be chosen 
as follows: uJt)=x”(t) and w,(t)=u”(t) where u(t) is either 
equal to x(t) or is a nonlinear zero-memory time-invariant 
function of x(t) which satisfies %#XU. The analysis function 
u(t) which is used for cross correlating with the response in order 
to obtain the system kernels need not be identical to the stimulus 
function x(t). In this paper we examine the behavior of the 
system kernels for general stimulus distributions and general 
analysis functions. The basis functions X,(t) and V,,(t) for n < 4 
are tabulated in Table I. 

In order for the orthonotmal bases to be complete it is 
necessary that each function x”(t) and u”(t) be linearly indepen- 
dent of lower order functions. An example of an incomplete 
analysis basis is given by the multilevel function o(t), where 
during each time interval, u(t) is equal to one of n possible fixed 
scalar values oi. For such a distribution u”(t) is linearly depen- 
dent on lower powers of u(t) as shown by 

fi (u(t)-u4)=0. 
i=l 

In the final section the case in which u(t) has a ternary 
(3-level) distribution is considered. In this case, V,(t) for n > 3 
becomes indeterminate (the normalization factor in the de- 
nominator vanishes as well as the numerator), so kernels with 
three or more repeated time indices are not calculable. An 
indeterminate kernel estimate means that the uuriunce of the 
kernel estimate is infinite. The inability to calculate diagonal 
elements of high-order kernels is not a severe limitation, since 
most analyses focus on kernels with less than three time indices. 
The limitation would be severe, however, for nonlinear zero- 
memory systems where the diagonal elements contain all the 
information. 

RELATIONSHIP OF DUAL KEXNELS TO VOLTERRA AND 
WIENER KERNELS 

The object of this section is to relate our dual kernels to the 
Volterra and the Wiener kernels. The functional expansion (2) 
can be inverted by cross correlating the response with the 
orthonormal analysis basis functions: 

snHn(T;” * * Tkn)Ey(t) ii V,(t-Ti). (7) 
i=l 

The relationship between iY, and h, can be found using (2) and 
(6): 

Hn(Tfl’. . ~2) = h,(T, . . .7,)n!/ fi n,! (8) 
i=l 

with n cZ~= Ini. The factorials give the number of ways a 
particular set of time intervals occurs in (2). Our use of H, rather 
than h,, will eliminate most of the combinatorial factors in the 
forthcoming equations. The functional expansion (2) can be 
rewritten by introducing a time-ordered (TO) summation (time 
ordering is introduced to avoid further factorials): 

(9) 

where ET means that 3 <p+ ,. Similarly we can introduce a 
time-ordered Volterra expansion to rewrite (1) as 
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TABLE I 
ORTHOGONAL DUAL BASS FUNCTIONS* 

symmetric Case (Xf"J = 0 for i + j odd) General Case 

xO 1 1 

Xl(t) x(t) 

- 
X2(t) x2(t)-x” 

x(t)-& 

- - - - 
x2(t) - vd - ; x2 __ x(t) - x2 vx- xX.x2 

vx-“X vx-;x 

3 
X3(t) x3(t) - x x(t) 

vx 

-- -_ 

X&(t) x4(t) - vv 4 x4 v&4 x2 - “2x2 x4 
-__ x2(t)+ - __ 
“22 4 x2 “2x2 - “2 x2 

“0 1 1 

v1 (t) v(t)/ ‘;;; -- 
(v(t) - V)/(vx - Y x) 

- - - - - -- - -- 
VZ(t) (v2 (t) 4 ) / (v2x2 -v%2) G - v 3 v2(t) - (v2x - x v2)v(t) - (v2 “X -v 9x) - -- - -- -- YG? (vx - ” x) - (“2X -X9) 77x2 - (“2vx-v”2x) x2 

- -- 
(v3(t) - L?T.!.L 

- 
V3(Q v(t))/(vc$ - *vx3 

vx vx 

*The basis functions A’, and V, are presented in the upper and lower halves of the table, respectively. The basis functions for a 
general stimulus function x(t) and general analysis function v(t) are presented in the right column for n < 2. Basis functions for the 
special case of symmetric x(t) and o(t) (odd moments of x and o vanish) are presented in the left column. 

where M = Zp- tmi and 

Gm(-.)=gm(--)m!,i~,mi!. (11) 

From (7) and (10) the dual-space kernels can be expanded in 
terms of Volterra kernels: 

where n, =0 for i >k. The time-ordered summation in which 
diagonal elements are treated differently from off-diagonal ele- 
ments allows the expansion coefficients x”V, to be easily calcu- 
lated using (4) and ‘(5). For example: 

1 v 7 
x”‘r/z =det x - 

ux I/ u2x det 
-- 
xm uxm u2xm 

1 u 7 

x ux u2x f 
-- 

2 ux2 u2x2 

(13) 

The time-ordered summation (12) however, has the problem 
that the relative contribution of diagonal and off-diagonal terms 
is affected by the size of the sampling interval 6. In order to 
eliminate the dependence upon sampling interval, the time- 
ordered condition must be removed. The resulting summations 
would be continuous, and the remaining diagonal contributions 
would then be the same as the diagonal contributions resulting 
from an arbitrarily small sampling interval. As a first step 

towards a continuous summation, the time-ordered summation 
will be replaced by an exclusive summation (EX) in which each 
time delay 7i can take on any value, except that it cannot equal 
any other time delay: 

where r =p - k is the number of distinct time intervals which are 
summed over. The factor l/r! is needed to compensate for the 
multiple counting which occurs when the time-ordered restric- 
tion is eliminated. 

The restriction ~+p in (14) can be removed by introducing 
expansion coefficients Qmn, and inclusive (IN) summations over 
rj, allowing the summattons to becontinuous: 

for&k 

The expansion coefficients Q,,m, can be determined by com- 
paring (14) and (15). In order to compare diagonal elements, it is 
first necessary to compensate for the normalization chosen in 
(11). This is most easily done by using (11) to reexpress both (14) 
and (15) in terms of g,,. Equating the coefficients of g,(Tm) in 
(14) and (15) for the case k = 1 gives: 
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TABLE II 
EXPANSION COEFFICIENTS FOR INCLUSIVE SUMMATION* 

Q ii = l 

901 
=X=0 

- 

Q02 = x=6 I P 

- 

903 = X362 
- -2 

Q04 = (x4 - 3x2 )d3 
- -- 

905 = (x5 - 10 x3 x2)64 
- -- --2 -3 

906 = (x6 - 15 x4 x2 - 10 x3 + 30 x2 )65 
- -- -- - 

Q07 = (x7 - 21 x5 x2 - 35 x3."+14ox3x2 )@ 

-- 

Ql2 = 6d I vx 
- -- - 

Q13 = 82 (vx3 - 3 vx x2)/vx 
- -- --- 

414 = 63 (vx” 1 4 w x3 - 6 vx2 x2)/w 
- __ -- -- 

Q15 =64 (m5 - 5 vxx4 - 10 vx2 x3 - 10 vx3 x2 
--2 - 

+ 30 vx x2)/vx 

- -- - -- 
‘23 = h3 - 9 x3) /(92 - v2 X2) 

*The functions x(t) and o(t) need not be symmetric, but they have been 
normalized to have a zero mean. 

where m = Z:,,mi. An alternate expression is obtained by group- 
ing together factors with equal m,: 

a"-"x"v, = x m! Qmo - x srn (( Qoj/j!)l'/5!) (16) 
Q m0! 5 j 

where r = Ejq and m = m,, + 2~“. 
The Q,,, can be determined iteratively by expressing Q,,,,, in 

terms of Q,,,,, with n’ <n and m’ <m. In order to simplify these 
calculations, the stimulus mean will be normalized to zero (X= 
0) causing Qo, to vanish. For example, consider the case m = 5, 
?I= 1: 

64 ~55 = e15+ y Q,,Q~+ & e13eo;? . . 
65! 

+ m QnQo3 + 2!3 fi Q,,Qh. 

so 

Q,,=g[ 0xs-5~(x4-3r;22)-10(ox3 -3=x2)2 

-- 
-1oux2 x3-15uxx22 . 1 

The first few Q,,, have been calculated and are presented in 
Table II. 

The expansion (16) is similar to the expansion of the char- 
acteristic function of a probability distribution in terms of the 
distribution cumulants. The expansion coefficients Qo, (and 
Q,,,, if u = x) are in fact the cumulants of x. 

It is convenient to group together the lowest order terms (for 
each value of r) in the Volterra expansion (15) which are 

specified by m, = n, for i <k: 

i>k 

(17) 
The superscript W is chosen since the expansion (17) is precisely 
the expansion of a Wiener kernel in which the stimulus function 
and analysis function are Gaussian. The expansion (17) is ob- 
tained for Gaussian stimuli, since Q,, -0 if m >n > 0, Qo,,, =0 
for m > 2, and Qoz = P, the power density. The usefulness of the 
normalizations (8) and (11) receives further support from the 
simplicity of (17). In terms of H W, the Volterra expansion of a 
dual space kernel (15) becomes 

(18) 
The difference between the Volterra-kernel expansion (15) and 
the Wiener-kernel expansion (18) is that in the latter mj is 
restricted to be greater than 2 for j > k. The terms for mj = 2 are 
included within the Wiener kernel. For example: 

+1/2 E E x Q~m,Qom,Qom, 
m,>l m,>3 m,>3 

+ 4th order terms. (20) 

The Wiener kernels which appear in this expansion are for a 
Gaussian stimulus with the same power density P=?& as the 
original stimulus. When x is Gaussian and u =x, the dual 
kernels are identical to Wiener kernels. 

The terms in (19) other than the first term will cause the 
dual-space kernel for general stimulus and analysis to differ 
from the Wiener kernels. In order to assess the magnitude of the 
deviation of the dual kernel from the Wiener kernel, it is useful 
to compare the size of the nonleading terms of (20) to the size of 
the leading term. The ratios of the sum of squares of the terms 
explicitly shown in (20) are 
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where the response y,(t) from the nth order kernel was defined 
in (2). The mean square nth order response is given by 

~=P”~g~[H,w(7,...~~)]2. 
Ti 

TABLE III 
EXPECTA~ON VALUES FOR TERNARY ANALYSIS AND GAUSSIAN 

SnMuLIJs* 

---ii 
““X” = vx v. (m-1) for m odd 

The average integration times T, are defined by = ,2,n 
“0 

b-2 ) for m even 
-- 

= o2 d (ov~x”-~ ) for all m,n 
do 

= 0 for m f n odd 

- -II 
x2n = x2 1.3 . . ..(2&1) 

,2 = &+ I=- *2 e-x2’202d~ = ,,2 

G  

The integration time T, is a measure of the extent of significant 
off-diagonal terms in H,. If, for example, H, is a constant when 
lri - rijj <A for all i#i’ and vanishes further from the main 
diagonal (Iri - T~,I> A), then T, -A/2. 

The right sides of (21) and (22) have three factors which limit 
the discrepancy between Wiener kernels and dual kernels. 

1) The factors ~x~/t)x(?)r/~ and (ox3/z?)-3 become 
vanishingly small as the stimulus and analysis distributions ap- 
proach the Gaussian case. -- 

2) The factor v,‘/u: gives the ratio between the contribution 
of the nth order kernel and the first-order kernel to the mean 
square response. It is often found that the first-order contribu- 
tion to the mean square response is greater than the sum of all 
higher order contributions. 

3) The factor (S/T,)“-’ has special significance for our pre- 
sent considerations. The integration time T, provides a measure 
of the temporal extent of significant contributions away from the 
main diagonal of the nth order kernel. By choosing the sampling 
time 6 to be small, the terms shown in (21) and (22) can be made 
small, and the kernels obtained with a non-Gaussian stimulus or 
analysis function are very close to the kernels for the Gaussian 
case. 

CHANGE OF BASIS 

How are the kernels for stimulus and analysis functions x and 
v, related to the kernels obtained with the same stimulus x, but a 
different analysis function v2? The kernels H,’ for the first pair 
(x,v,) can be expressed in terms of the kernels H,’ for the second 
pair (x,v2) by expanding the first orthonormal basis in terms of 
the second: 

v-p(t)= z v:‘(t) xg)vp . 
m>n (23) 

The terms with m <n are not present since m =0 for m <n. 
Inserting (23) into (7) leads to 

(24) 
This transformation is particularly simple since there is no 
summation over time. 

For symmetric stimulus and analysis functions the leading 
terms of the expansion are 

77x3 = (a2 + 202) vx 

- -- 
“22 - “2 x2 = a v,TFc 

- -- 
9X4 - “2 x4 = a ” (a2 + 302)Yz 

0 

*The ternary function o(r) is given by (26). The zero-mean Gaussian x(t) 
has a standard deviation, m. 

From Table I the leading coefficients are 
33 

)pvf” = x - x  
-1 xv2 - -_ __ -- vfx’ - v: x4 x.$2)vy) = - vgx4 - lJ2’ x4 
vfx’ - v: x2 -- - 2z_JT . (25) 

v2x 2 

GAUSSIAN-TERNARY DUAL KERNELS 

A simple example which illustrates the preceding formalism is 
the case in which x(t) is zero-mean Gaussian and v(t) is the 
ternary function of x(t) given by 

v(t) = -t 00, for x(t) 2 _’ a 

v(t)=O, for Ix(t)1 <a. (26) 
The value of 0, is irrelevant (one can take vo== l), since the 
normalizations of I’,, and X, eliminate all occurrences of v. from 
the dual kernels. The expectation values for ternary analysis and 
Gaussian stimulation are given in Table III. 

The dual ternary kernels hr are related to Wiener kernels by 
either (19) or by (24), (25): 

* [ i$(T,,T;) + hqW(T;,T2)] + * . ’ 

h,T( T2) = h2W( T2) + 8P h4”( T4) + ’ * . (27) 

H~(T~)=H~(T~)+H&T~)S~X~~)F’~‘) + -.a . 
where a’-x’, and P= a28 is the power density of the stimulus at 
low frequency. 
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Because of the following property of a ternary function: 

u”(t)=u(t)uo”-‘, for n odd, 

u”(t)=u2(t)u~-2, for n even, 

the kernels with three or more repeated time indices are inde- 
terminate. This is because both the numerator and denominator 
of V,(t) vanish for n > 3. 

The use of ternary instead of Gaussian analysis causes the 
dual kernels to deviate from the Wiener kernels in two respects. 
First, there are contributions from diagonal elements of high- 
order kernels (18)-(22) and (27). Second, because the analysis 
basis is incomplete, certain diagonal elements of the ternary 
kernels are indeterminate-having infinite variance. Both devia- 
tions involve diagonal elements with at least three repeated time 
indices. 

The symmetric ternary truncation requires a choice of a/a, 
the cutoff parameter, which relates the Gaussian distribution to 
the ternary threshold levels. There are several alternative choices 
for a/u which can be justified on three different grounds. 

1) Eliminate the contribution of gs(rrr) to MT). The condi- 
tion ux3-33t)x?=O leads to a/a=l, since ux3/~=a2+2u2 
and ?= e2. 

2) Normalize the second-order kernel diagonal elements to 
equal the normalization for off-diagonal elements. This item 
may be the most important, since a filtered Gaussian stimulus 
produces kernels without a well defined diagonal. The condition -- -- 
is x2u2-x2u2=2z which leads to (a/a)2=8/~e-“2/“2. The 
solution of this transcendental equation is a/u-0.98. This con- 
dition is essentially the same as the previous condition a/u= 1. 

3) Minimize the variance of the first-order kernel (16). The 
variance is proportional to the factor f=x2u2/VXL==/2ea2/* 
eerf (a/u). The correlation between x and u is given by f-‘12. 
For a = u the factor f equals 1.37, which is 10 percent greater 
than the minimum value of f which occurs at a=0.7u. The 
factor f= 1.37 implies that an experiment must run 37 percent 
longer if the ternary rather than the original Gaussian function is 
used for cross correlation. This may be a small penalty to pay 
for the gain in computation speed. 

The truncation value a/u= 1 meets all three criteria satisfac- 
torily, so this value can be used with the assurance that the 
kernels obtained have minimal systematic and statistical devia- 
tions from Wiener kernels. 
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Comments on “Binary Single-Sideband Phase-Modulated 
Communication System” 

S. K. MANOCHA 
In the above paper,’ equations (8) and (9) should have read 

ew [ X<t>] sWdO= -exp [A(t)] sinfd0, (1) 

ew [&O] cosfdO= -exp [ OO]  cosf,(O. (2) 
Squaring and adding (1) and (2) gives 

exp [2&O] =exp [Tf1<0]~ 
or 

m =ito. (3) 
This implies that 

hto=fitt)+K (4) 
where K is an arbitrary constant. Equation (4) holds since the 
Hilbert transform of a constant is zero. Also, by dividing (1) and 
m 

tanfe(t)=tanft(t) 

h(t) =f1(4 + (2n + lb-3 (5) 
which verifies that fe(t) and f,(t) are equal to within an additive 
constant (2n + 1)~. Thus equation (6)’ can be satisfied by such 
functions f&t) and f,(t), and it is possible to obtain antipodal 
signals using single-sideband phase modulated formulation. 

Author’s Reply2. 3 

I believe that Mr. Manocha is correct in his conclusion that it 
is possible to obtain antipodal signals with the single-sideband 
phase modulated (SSBPM) formulation. The basic conclusion of 
the paper concerning the suboptimum performance of an 
SSBPM system with square modulation remains, however. If Mr. 
Manocha is pursuing this subject, it would be of interest to see if 
he could discover a class of modulating waveforms which would 
minimize both the bandwidth and the intersymbol interference 
in a practical digital SSBPM system. 
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