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ABSTRACT

This paper asks how the vision community can contribute to the goal of achieving perceptually lossless image fidelity
with maximum compression. In order to maintain a sharp focus the discussion is restricted to the JPEG-DCT image compression
standard. The numerous problems that confront vision researchers entering the field of image compression are discussed. Special
attention is paid to the connection between the contrast sensitivity function and the JPEG quantization matrix.

L_INTRODUCTION

In the last few years a number of image compression standards have emerged. With computers, FAX and soon HDTV and
picture phone, the need for image compression is so great that these standards are quickly being incorporated into hardware. The
compression standard developed by Joint Photographic Experts Group (JPEG) is the most popular and several programs using it
are now available for personal computers. The need for evaluation of these algorithms is self-evident and vision researchers are in
an ideal position to make a contribution to this important endeavor. This article seeks to make the field of image compression
more accessible to vision researchers. The equations and issues that we will explore are ones that we wish we had seen several
years ago when we first entered this area of applied vision.

In this paper we are going to concentrate exclusively on the JPEG algorithm. Due to the critical need for an image
compression scheme that works well, JPEG has become an accepted and implemented standard. JPEG is also surprisingly
simple. The compression step can be expressed as a simple set of transforms, and the decompression step is almost identical to
the compression step. JPEG is also remarkably successful at achieving high compression rates with little noticeable distortion.

JPEG owes its success to a clever filtering stage that, as will be shown, is amenable to analysis from a vision science
viewpoint. The image is processed first with a filter function that is implemented with the discrete cosine transform (DCT). By
comparing the filter stage with a filter model of the human visual system (HVS), it is possible to determine the expected image
distortion in just noticeable differences (JNDs). Further, we can estimate the compression in bits per pixel of the compression
stage before entropy coding.

The JPEG standard is flexible. The filter stage has been left open for modification by means of a quantization matrix that
contains the weighting function of the DCT basis set. Vision scientists can help improve JPEG through the judicious selection
of this matrix, perhaps based on an analysis of the image to be compressed. By making the link between the JPEG algorithm
and the HVS explicit, we will allow the developing HVS model to be applied to improving and understanding the quantization
matrix. We will also show how the contrast sensitivity function combined with known masking effects can be used to estimate
the visual loss caused by a given quantization matrix.

This paper will also provide a general overview of how a vision scientist can understand and analyze the JPEG
compression scheme. We will show new formulae for determining the mean square error after filtering based on a minimalist
DCT model of the human observer. We will also show why the DCT basis set is so effective by showing a Fourier analysis of
the basis set and how the basis set avoids problems that one might expect in a block-by-block processing scheme.

2. THE JPEG ALGORITHM AND PROBLEM STIMULI
2.1. The simplicity of the IPEG algoritl

The JPEG compression and decompression algorithm is surprisingly simple. A critical step is to define the one
dimensional DCT basis functions with the normalization specified by JPEG:
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Jjpegcos(m,i) = cos((i+.5)mn/npix) (2/npix)-5 form>0 1)
and jpegcos(0,i) = (1/npix)-> for m = 0. (V)

Both m, the spatial frequency in units of half-cycles per block, and i, the spatial position of the pixel within the block, range
from O to npix -1=7, where npix is the number of pixels in a block (npix = 8, the JPEG standard will be used throughout). As
seen from Eq. 2 the m=0 (DC) basis function has an extra 2-5 normalization factor compared to the other basis functions.

The DCT transform for calculating the DCT coefficient, coef(m,n), in terms of the initial stimulus, x(i,j), is given by
the following summation over the 64 spatial positions in a block:

coef(m,n) = I ; jpegcos(m,i) jpegcos(n,j) x(@i,j) A
where jpegcos(m,i) jpegcos(n,j) is the cosine basis function. The compressed coefficient g(m,n) is given by:
q(m,n) = INTL.5 + coef(m,n)/quant(m,n) ] @

where quant (m,n) is the quantization matrix (to be discussed in Section 3) which determines the severity of compression. The
number that is to be transmitted or stored, q(m,n), is typically zero since most of the DCT coefficients are below threshold. The
quantized coefficient, coefq(m,n) is given by:

coefq(m,n) = q(m,n) quant(m,n) ®

Finally, one can calculate the decompressed final image. The JPEG normalization of the basis functions has the unique property
that the forward and inverse transforms are the same. The inverse transform is the following summation over the 64 spatial
frequencies in the block:

final(i.j) = £m,n jpegcos(m,i) jpegcos(n,j) coefg(m,n) )

where final(i,j) is the final decompressed image. If the quantization matrix were very small then coefq(m,n) would be very close
to coef(m,n) and the final image, final(i,j), would be very close to the initial image, x(i,j).
2.2, The advantages of the JPEG algorithm

We have applied JPEG compression to a wide variety of standard stimuli, including Mandril and Lena, using the
compression matrix suggested by JPEG (Table 3) and we were amazed at their high quality with only an average of .5 bits/pixel.
We also tried a variety of simple stimuli including lines, edges and text and still found that compression was excellent. Only the
class of stimuli to be discussed in Section 2.3 caused severe degradation. We had imagined that one of the most severe artifacts of
the JPEG algorithm would be the presence of strong blocking artifacts since the blocks are all aligned. We expected the most

severe blocking artifacts would be at high spatial frequencies due to a combination of the large quantization of high spatial
frequency coefficients together with the truncation of the basis function at the block boundary.

To our surprise the severe quantization of high spatial frequency basis functions did not produce vivid edge artifacts. A
sharp termination of a high spatial frequency grating should produce low spatial frequencies that would be more visible than the
nominal high frequency grating. To understand why this is not the case it us useful to examine how the high spatial frequency
basis functions are windowed. The 8 basis functions are shown in Fig. 1. The values at the 8 pixel locations are indicated by
symbols. For the basis functions from m = 0 to m=5 the underlying cosine functions have been drawn in. For the m=6 and m=7
basis functions the gnvelope has been indicated, rather than the function itself. The envelope is a simple sinusoid, as seen when
trigonometry identities are used to rewrite the basis functions:

cos((i+.5)mn/8) = (-1) sin((i+.5)(8-m)n/8) 0]

For example, the highest basis function (m=7) is identical to the alternating luminance (-1)! times the low frequency sinusoidal
window, sin(i+.5)n/8 as seen in the top of Fig. 1. The sinusoidal window function allows the high frequency DCT basis
functions to smoothly blend in with the adjacent blocks.

The smooth envelope of the high spatial frequency basis function is one of the main reasons for the success of DCT
compression. There are enough cycles in the one-dimensional m=6 and m=7 basis functions (3 and 3.5 cycles respectively) so
that they are narrowly tuned in spatial frequency. This narrow tuning is not true for many of the wavelet basis functions that are
alternatives to DCT. Narrowly tuned basis functions do not contribute to low spatial frequencies that are more visible, thereby
allowing greater quantization to be achieved without being perceptible. In addition, the high spatial frequency basis functions
have an envelope that makes a smooth transition to the adjacent block, similar to Gabor patches. This feature is important for
minimizing the blocking artifacts.
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Figure 1 The DCT basis set with the envelope shown for m=6 and 7
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We wanted to find out what sorts of images caused JPEG to produce the most perceptual distortion, images that were
“difficult” for JPEG to compress. If difficult images could be isolated, their reasons for causing JPEG to fail could be found and
perhaps JPEG could be improved by using a better quantization matrix.

In our search for difficult images, we used spatially simple patterns as the input for JPEG. The pattern we found that
caused the most difficulty for JPEG was the “killer dot”. It consists of a bright dot surrounded by a ring of dark dots at minimum
intensity. The dot and its surround are placed on a grey background that is close in luminance to the average of the dot and its
surround. Here are the pixel luminance values that occur when an 8 x 8 pixel block is compressed and then decompressed:
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Table la Table 1b

The purpose for using a single dot rather than a line or edge is that a dot will produce a small amount of activity in all 64
DCT coefficients. The black pixels surrounding the white central pixel put more energy into the higher spatial frequencies and
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less into the lower frequencies. There is only a very slight amount of DC offset that the dot contributes to the background. The
small DC offset and all of the other DCT coefficients each contain a sufficiently small amount of the dot's total power that the
dot is entirely quantized away!

In assessing how the quantization matrix is associated with image quality two questions can be raised: a) how much of
the quantization loss is perceptually visible? and b) how much of the compression is image dependent? In order to answer these
questions it is useful to express the root mean square error (RMSE) in the space of DCT coefficients rather than in the original
pixel based image space.

The usual formula for RMSE of an 8 x 8 pixel image is:

7 17
RMSEjmage = ’\/;1472 2 (i) ®

i=0 j=0
where e(i,j) is the difference between the original and the processed image:
e(ij) = x(iy) - final(i,j). )]

RMSE is measured in units of pixel intensity. Thus RMSE goes from a value of O in the case of a perfect match between
original and processed image, to a value of 128 for the case in which all 64 pixels in the original block had a value of 0. Severe
quantization causes all values of the processed block to be at the mean level of 128. Each pixel will then have the maximum
discrepancy of 128.

According to Parseval's theorem the RMSE could equally well be written in terms of the error in the DCT coefficients:

73
RMSEgo; = '\/;;Z Y e2(m,n) (10)

m=0 n=0
where ¢'(m,n) is the difference between the DCT coefficients of the original and the quantized image:

€(m,n) = coef(m,n) - coefq(m,n) 1y

The two expressions for RMSE in Egs. 8 and 10 will be almost equal. They are not identical because of round-off errors since it
is typical for both e(j.k) and ¢'(m,n) to be rounded off to integer values.

Eq. 10 has an advantage over Eq. 8 because the error can be directly related to the quantization matrix. The most that
¢€'(m,n) can be is half of the value of the quantization matrix, quant(m,n). For DCT coefficients whose values are larger than the
quantization level, the values of e'(m,n) are expected to have a uniform distribution going from -quant(m,n)/2 to +quant(m,n)/2.
The standard deviation of these errors (rms value) is quam(m,n)N 12. Therefore Eq. 10 can be written as:

7 1
RMSEquant = 7&-2_0 20 quant?(m,n) (12)
m=0 n=

where 768 = 64 x 12.

Two modifications to Eq. 12 are needed to obtain a formula relevant to specific images and to the human observer. First,
Eq. 12 has the advantage that it is independent of the image and only depends on the severity of the quantization. It would be
correct for a worst case image in which all 64 DCT coefficients are contributing to the error. This might be true for a white noise
image or the “killer dot” image, but it is not true for a more standard image where many of the coefficients are close to zero. The
characteristics of the image block can be introduced by introducing an image function I(m,n):
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7 7
RMSEimage = ’\/ 7—&-2 2. I(m,n)quant?(m,n) (13)

m=0 n=0
where
I(m,n) = 0 if g(m,n)=0
and K(m,n) = 1 if g(m,n)>0 (14)

with g(m,n) being the quantized coefficient given by Eq. 4. It is greater than zero if coef(m,n) is larger than quant(m,n)/2. Thus
for a specific DCT block the RMSE gets contributions only from those coefficients that are larger than half the quantization
matrix (assuming small coefficients will tend to be much smaller than the quantization level). In a typical image very few of the
high spatial frequencies are above the quantization level so the RMSEjmage can be significantly smaller than its maximum
value. For the total image, rather than a single block, the estimate of RMSE can be obtained by replacing Eq. 14 by:

I(m,n) = probability that coef(m,n) > quant(m,n)/2 averaged over the whole image. (15)

A second modification of importance is to take into account the visibility of each block. We would like to have a RMSE
that indicates the portion of the RMSE that is perceptually visible. We will do this in two steps. In this section we will
incorporate the effect of optical and neural blurring. In Section 4 we will add the effect of the visual system's overall sensitivity.
Let us suppose that the blurring produced by the human visual system is represented in frequency space by the function: B(m,n).
The form of this function will be considered in Section 4. The image independent RMSE for a comparison of the blurred original
and decompressed image is:

77
RMSEpjyr = '\/ ﬁz Y BX(m,n)quant?(m,n) (16)

m=0 n=0

The blur function will severely attenuate the contribution of high spatial frequencies to the RMSE. Eq. 16 can be reduced in
magnitude by including the effect of specific images. In that case Eq. 16 would be modified by introducing the image function
I(m,n) just as was done in Eq. 12. The RMSEyp),; in Eq. 16 has the same units as was discussed following Eq. 9. If the
sensitivity of the HVS is included in addition to its blur, then the units of RMSE would change from units of pixel intensity to
units of perceptual just noticeable differences (JNDs) as will be taken up in Section 4.

3.2, Caleulati ion_effici hieved by t} oo

It seems natural to ask what is the degree of compression achieved by the quantization step. Surprisingly, the answer isn't
normally specified. Typically, an 8 bit/pixel image is reduced to .5 bit/pixel after JPEG compression. However, the value of .5
bits/pixel is the result of both the quantization step and also the entropy coding step. Isolating the bit savings due to quantization
turns out to be a straightforward calculation based entirely on the quantization matrix and is independent of the particular image.
The formula for the number of bits of information that are kept after quantization is given by:

# quantized bits/pixel = {loga(coefmax(0,0)/quant(0,0)+1)+ Yloga[2coefy ax(m,n)/quant(m,n))+1]} /64. an

where the summation is over the 63 DCT coefficients other than the DC component. The matrix coefyax(m,n) is the maximum
value that the DCT coefficient can assume. It is calculated from Eq. 3 using the following stimulus to obtain the maximum
value for coefmax(m,n):

Xmax (i) = 127.5*(1 + SGN( jpegcos(m,i) jpegcos(n,j) )) (18)

where the SGN function =+1 or -1 depending on whether the argument is positive or negative. Eq. 18 produces an extreme set of
stimuli with values of 0 and 255 that maximize each DCT coefficient. The coefy,ax(m,n) matrix is shown in Table 2.

The DC component in Eq. 17 is treated separately since it can not be negative. The AC coefficients can be both positive
and negative so the number of possible levels is doubled. Thus, for example, if the quantization matrix is unity (quant(m,n)=1)
then 10.8 bits/pixel will be kept. This number is very close to the 11 bits per pixel that would correspond to 2048 contrast
levels for each DCT component. It surprised us at first that the "compressed” image might require more bits/pixel than the 8
bits/pixel of the original. More pixels are required because in the DCT transform the original image is multiplied by cosine basis
functions. The basis functions are floating point numbers so the resulting DCT coefficients are also floating point numbers. If
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one starts with an 8 bit image where each pixel lies in the range between 0 and 255 then because of the JPEG choice of
normalization the coefficients must lie in the range between tcoef,ax Whose values are given in Table 2.

Q 1 2 3 4 3 6 1
2040 924 942 924 1020 924 942 924

924 837 854 837 924 837 854 837
942 854 871 854 942 854 871 854
924 837 854 837 924 837 854 837
1020 924 942 924 1020 924 942 924
924 837 854 837 924 837 854 837
942 854 871 854 942 854 871 854
924 837 854 837 924 837 854 837
Table 2 Maximum coefficient value, coefpygx(m,n)

R\ A RN -

If the quantization matrix is unity then as mentioned, each DCT coefficient will be rounded off to the nearest integer and it will
take up to 11 bits to represent the coefficient. However, if all elements of the quantization matrix are 8, then each DCT
coefficient will have three less bits and the maximum number of bits/pixel will be 8, the same as the original image. If the
geometric average of the quantization matrix is above 8 then fewer bits will be required and compression will result even without
entropy coding.

33, TI I . i { by IPEG

The actual quantization coefficients, quant(m, n), suggested by the JPEG committee (Rabanni & Jones, 1991) are shown
in Table 2, where the numbers in the top row and left column give the number of half-cycles per block. Thus the bottom row
corresponds to 3.5 cycles per block oriented horizontally.

0 1 2 3 4 b (4] 1
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 14 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
Table 3. The JPEG suggested quantization table, quant(m,n)

NI D W =

For this quantization matrix, 5.5 bits/pixel are thrown away by quantization as compared to having a unity quantization
matrix and 5.3 bits/pixel remain for specifying the image, since as calculated in the preceding paragraph there are a total of 10.8
bits/pixel with a unity quantization matrix. When the JPEG compression, including the Huffman coding stage, is applied to a
complex image, only .5 bits/pixel are typically needed. The final 4.8 bits/pixel in going from 5.3 to .5 bits/pixel was achieved
by the entropy coding stage. Thus a 8/5.3 =1.5-fold reduction in bits/pixel was achieved by quantization and a 10.6-fold reduction
was achieved by entropy coding. However, this large coding reduction depended upon the prior quantization step!

Inspection of the quantization coefficients suggested by the JPEG committee reveals some unexpected values. Notice in
Table 3 that the quantization for vertical and horizontal gratings whose spatial frequencies are 3 c/block are quite similar:
quant(0,6)=51 and quant(6,0) = 49. That means that if the DCT coefficient is less than 25 it will be quantized to zero. However at
5/2 c/block the vertical gratings are substantially more quantized than horizontal (40 vs 24) while at 7/2 c/block the horizontal
gratings are quantized more than the vertical (72 vs. 61). There is another flip-flop between 2 c/block and 3 c/block. We are
mystified as to why the quantization between the horizontal and vertical grating sensitivities shows this unusual structure. One
possibility is that on a display monitor there are strong nonlinearities between adjacent pixels in the direction of the raster (the
horizontal direction) whereas in the vertical direction the luminances of adjacent pixels do not interact. It is possible that the
experiment done by the JPEG committee for arriving at their quantization table were influenced by the monitor's asymmetric
nonlinearities. Another possibility is that the quantization table used by JPEG was based on noisy data. This latter possibility is
reinforced by the unusually high quantization value of quant(4,5) = 109.

Another unusual feature of the quantization table is that the quantization values of quant(m,7) are lower than the values
quant(m,6) (except for the coefficients with m=0). This seems to imply that the 3.5 c/block components are more visible than
the 2.5 c¢/block and 3.0 c/block components. This doesn't make sense. Maybe the JPEG committee knows something important
that should be communicated to others.
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3.4. Basing I izati i the visibility of basis functi

One of the first questions that occurs to a psychophysicist dealing with compression is "what experiment can I do to
optimize the quantization matrix?" One possible answer is to set the quantization matrix proportional to the visibility of each
DCT basis function (Peterson, Peng, Morgan & Pennebaker, 1991). Sections 4.2 and 4.3 will show an alternative approach. We
would like a quantization matrix quant;,(m,n) that was exactly visually lossless for each DCT basis element (the subscript th
implies it is a quantization matrix based on visual thresholds). That is, if any single DCT element was processed with JPEG, we
would like the quantized matrix to represent that DCT element with a 0 if it was below threshold.

The amount of quantization for any single basis input can be determined psychophysically (Peterson, et al., 1991, Peterson,
1992). An experiment could be conducted with a stimulus in which only the (0,0) and (m,n) coefficients are nonvanishing. The
decompressed pattern can then be written from Eqgs. S & 6 as:

final(i,j) = coefg(0,0)/8 + q(m.n) quant(m,n) jpegcos(m,i)jpegcos(n,j) (19)

Eq. 19 is simply a DCT basis element (m,n) combined with a luminance background of the DC level specified. This test
patch would be shown to a subject and the subject's threshold for the detection of this element would be measured. We would like
the quantized data q(m,n) to be in units of threshold, that is, we want g(m,n)=1 to decompress to a DCT basis function at exactly
threshold. In order to have q(m,n) make the transition from 0 to 1 at the point when the decompressed pattern final(i,j) just equals
the threshold value, threshold(m,n), the quantization matrix must be related to the detection threshold of a DCT basis function by
the following normalization:

quantg,(m,n) = 2*threshold(m,n). (20)

With a quantization matrix determined by these means, a single basis patch would be quantized into units of threshold. This
method for determining the quantization matrix is alluringly simple and would be appropriate if the image to be compressed
consisted of a number of isolated basis functions on a uniform background. Typical images, however, are more complex. An
improved compression scheme would consider how the visibility of a basis function is affected by different backgrounds.

Eq. 20 is based on the suggestion that the quantization matrix can be determined by measuring the visibility of single
DCT basis functions on a uniform field. Improved image fidelity and compression might be achieved by alternative choices of
what patterns to use. The next section will consider several issues: 1) Instead of measuring a single 8 x 8 DCT basis function
one could measure the visibility of an entire grating (the CSF). By relating the quantization matrix to the CSF one can tap into
the vast literature on how the CSF varies with many different conditions (luminance, field size, pixel size, color, temporal factor,
orientation, monocular vs. binocular viewing...). 2) Instead of measuring the DCT basis function on a uniform field with only
one basis function present in the block, one could ask what is the visibility of a given basis function when noise or other
components are present. Masking effects may allow the quantization matrix to be larger than what would be determined by Eq.
20. As will be discussed in the next section these are tricky issues since some backgrounds facilitate the visibility of the basis
functions, thereby reducing and even reversing the masking effects.

4. APPLYING HUMAN VISION AND IMAGING SYSTEM MODELS TO COMPRESSION

One of our primary research goals is to improve our model of the human visual system so that that a computer program
image encoder could evaluate image fidelity and choose among alternative quantization matrices to optimize image compression
and fidelity. A number of researchers from Mannos & Sakrison (1974) to Scott Daly (1992) have made important progress in
this regard but much remains to be done. Here we first explore methods of calculating image fidelity, in JND's, in terms of a
given quantization matrix and the human detection thresholds for the DCT basis functions. Next, the connection between the
visibility of the DCT basis functions and the human contrast sensitivity function is described. This enables us to derive
quantization matrices for different pixel sizes based on the contrast sensitivity function. As will be discussed, improving the
selection of quantization matrix coefficients will require consideration of factors such as mean luminance, visual mechanism
inhibitory and facilitatory interactions and finally a model of the imaging systems nonlinearities such as its gamma function and
interpixel interactions.

t1 A RMS function that i tes the HVS

Eq. 16 presented a mean square error formula for calculating image fidelity. It included the effects of optical and neural
blur. We can improve this formula by putting it in terms of HVS sensitivity to the error. We could use the best available model
of human vision to determine this function. This would include the contrast sensitivity function (CSF), which is the sensitivity
to the Fourier basis set (sinusoids), which has already been measured in countless experiments under countless conditions. It
would also include the orientation and frequency tuning of the underlying mechanisms. The full HVS model would also include
the nonlinearities associated with the visual system's nonlinearities such as adaptation and masking. That ideal approach will be
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discussed later in this section. But first, it is useful to see how far we can get in terms of the DCT framework and construct the
fidelity metric with our threshold matrix, quantsp,, based on the visibility of individual DCT basis elements.

We would like to propose Eq. 21 as a metric for evaluating the fidelity to be associated with a given quantization matrix
(remember that this fidelity metric is image independent).

IND - ,\[ 3y L quant’(m,n) en

m=0 n=0 quanty (m n)

There are many things wrong with Eq. 21 as a model for the visibility of a pattern (to be discussed later). But we suspect that it
is better than many measures of fidelity that are in current use. Eq. 21 differs from Eq. 16 in 3 ways:

1) RMSE on the left side of Eq. 16 is replaced by JND (just noticeable differences). The goal is to calculate the amount by which
the error e'(m,n) exceeds threshold. We would like to develop an expression for the number of JNDs by which the quantized
image differs from the original. The units of Eq. 16 differs from Eq. 21. The RMSE that is calculated by Eq. 16 has the same
units as the pixel intensity. Thus an RMSE of 3 is to be compared to the full intensity range that goes from 0 to 255. The units
in Eq. 16 are not very clearly related to visual threshold. Eq. 21 is in threshold units.

2) The blur function B(m,n) in Eq. 16 is replaced by the contrast sensitivity for seeing a given DCT basis function. In order to
get the units correct one must convert from the % contrast that is associated with the CSF to the intensity units going from 0 to
255 that is associated with the quantization matrix. This is most simply achieved by expressing the threshold visibility of a
DCT basis function, in the same units as the quantization matrix. That is why quantg,(m,n) appears in the denominator of Eq.
21. The quantity, quant;,(m,n), is related to the detection threshold by a factor of 2 as given in Eq. 20. The factor of 2 is due to
the way quantized coefficients are rounded off. A component at threshold should be quantized to 1/2. That way, when the
coefficient is rounded off, it will be represented by 1. If threshold was quantized as 1, a 1/2 threshold DCT component would be
reconstructed as a full threshold DCT component after compression.

3) The coefficient 1/768 that was present in Eq. 16 is missing in Eq. 21. The coefficient was present because the M in RMSE
stands for mean. The RMSE calculates the average error per pixel. On the other hand, Eq. 21 accumulates the total number of
JNDs that the block is above threshold.

2. Fourier transf [ 1l di ional DCT basis functi

The goal of this section is to connect the visibility of the one-dimension DCT basis functions jpegcos(m,i) to the contrast
sensitivity function (CSF). By CSF we mean the sensitivity of the visual system to a full field sinusoid. The basis function,
jpegcos(m,i), extends over only 8 pixels (i goes from 0 to 7). It is fairly well localized in space so it must have a broad Fourier
spectrum. This section examines the Fourier tuning of jpegcos(m.,i).

The Fourier transform of the DCT basis functions, FpcT(m.f), can be calculated most simply by choosing the origin to
be the center of the block. In that case the Fourier transform can be directly written as (ignoring factors of 2):

3
Fpcr(m,f) = z cos(m(i+.5)r/8) cos(f(i+.5)n/8) for even m
i=0
3
or = D, sin(m(i+.5)n/8) sin(f(i+.5)/8) for odd m @)
i=0

Notice that for even m, Fpcr(m.f) = coef(m.f) for a stimulus that is zero everywhere except the first 4 diagonal elements (x(i,i) =
1 for i<4, and x(i,j) = O elsewhere). The Fourier transform given by Eq. 22 can be rewritten in a most unusual form:

Fpcr(m,f) =2 [cos((f-m)r/4) cos((f-m)r/8) cos((f-m)n/16) + (-1)™ cos((f+m)r/4) cos((f+m)n/8) cos((f+m)n/16)] (23)

Egs. 22 & 23 have the necessary property that they vanish when f - m is an even integer different from 0 and also when f=0 and
m is odd. It equals 2 when f=m # 0 and equals 4 when f=m=0. The form shown in Eq. 23 makes it easier to understand the
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properties of the tuning function. This form for the Fourier transform is easily extended beyond 8 pixels/block. For example, if
the block size is 16 one merely adds an extra factor of cos((f-m)n/32) to the first term of Eq. 23 and a factor of cos((f+m)n/32) to
the second term. As long as the number of pixels/block is a power of 2 the Fourier transform can be written very simply.

Eq. 23 can be written in an even more elegant form:

sin((E-mym/2) o jym _sin((f+m)n/2) |
FDCT0 = 2N (G mm2) ) sinEsmm2N)) @
where N = npix is the number of pixels per block (N=8 for JPEG). It is clear that when f is close to m the first term in Eq. 24
dominates and the function looks like a sinc function, even for m>0. The numerator in Eq. 24 can be simplified since m is an
integer:

Fwﬂm@=%%mmn @)
where the envelope is: Env(m,.f) = [1 - sin((m-f)n/2N)/sin((m+f)r/2N) 1.

This form is especially useful for understanding the reason for the damping of the envelope when f<<m. It also makes explicit
the locations of the zero crossings. The reason that we have shown so many alternative ways for writing the Fourier transform is
that different alternatives are simpler for different ranges of m and f.
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16 e =1
14

12  — m=6
10 x\‘m=5
8 - \jmﬂ
6 4 74'“:3
4 11— ——{m=2
2 j!-g_<m=1
0 /r\c7m=o
-2

0 1 2 3 4 5 6 7 8

Spatial frequency (half cycles/block)
Figure 2. Fourier transform of the DCT basis set.

Fig. 2 shows plots of the eight tuning functions given by Egs. 22 - 25. Successive curves are displaced upward by 2
units. The lowest curve is the Fourier transform of the DC term. Since the DC term, jpegcos(0,i), consists of 8 discrete pixels
(delta functions) rather than being a continyous constant, its Fourier transforms are similar, but not identical, to a sinc function.
The second curve from the bottom is the Fourier transform of a half cycle of a cosine. The Fourier transforms for even and odd
values of m are purely real and imaginary when the origin is taken to be the center of the spatial block. An interesting set of
features shown in Fig. 2 are the locations of the peak sensitivities. The dots on each curve indicate the nominal spatial frequency
for that curve. Thus, for example, on the m=7 curve the mark is at a frequency of f=7 half-cycles/block. Notice that for each of
the curves (except m=0) the peak Fourier amplitude occurs gbove the nominal spatial frequency.
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Let us now qualitatively discuss how we might expect the visibility of the DCT basis functions to be related to the
visibility of full field sinusoids. Consider the lowest frequency basis function (above DC) given by:

jpegcos(1,i) = .5 cos((i+.5)n/8)

where i goes from 0 to 7. This function is 1/2 cycle of a cosine in width and has the same extent in height. Because grating
visibility increases with the number of cycles for low spatial frequencies, the extended gratings could have much lower
thresholds. Estevez & Cavonious (1976) and Robson & Graham (1981) have shown that the visibility of a grating increases
linearly as a function of extent in both dimensions up to about 2 cycles. For larger sizes the visibility increases at a slower rate.
Thus a quantization matrix based on a single block might lead to a quantization value that is too large for an extended grating
stimulus. One might expect that the detection contrast of a half-cycle square grating is more than 10 times larger than the
detection threshold of a large grating. The difference between these two stimuli is not really so large because the low frequency
DCT basis function is in cosine phase so the block is terminated by a sharp discontinuity on all 4 sides. This discontinuity
produces high spatial frequency components that will aid the detection of the DCT basis function. Experiments are needed
comparing the visibility of a low frequency DCT block to the visibility of an extended grating. If the full grating has a
significantly lower threshold then, to be conservative, one should use the full grating for measuring the quantization matrix.

For the high frequency basis functions the case is quite different. Suppose one decided to use an extended grating to
measure the quantization matrices (Rajala, et al., 1992). The problem is that an extended grating might be less visible than the
corresponding DCT basis function. At high spatial frequencies the falling CSF balances the increasing sensitivity at the nominal
spatial frequency so that we expect the visibility of the DCT basis functions to be determined by the sensitivity near the nominal
spatial frequency. However, it seems advisable to carry out psychophysical experiments to compare the visibility of full
sinusoids to the visibility of the DCT basis functions.

In summary, we suggest that the visibility of jpegcos(m,i) for low values of m may underestimate the visibility of full
field gratings. For high values of m the situation is reversed. Thus if one wants to use the CSF to estimate the visibility of
DCT basis function one must apply a correction factor. At low frequencies the CSF must be reduced (low frequency DCT basis
function are less visible than gratings because of the field size effect). At high frequencies the CSF must be increased (high
frequency DCT basis functions are more visible than gratings because of edge effects causing the basis functions to contain
lower, more visible frequencies). A "fudge factor” with exactly this type of frequency tuning, going from about .5 at low
frequencies to about 1.5 at high frequencies was proposed by Nill (1985). However, the basis for his derivation makes no sense
to us. Further clarification of this topic is needed.

43. A CSF based tizati rix- Effect of orientation tuni

The story of how to assess the optimal quantization matrix is more complicated than what was discussed in the preceding
section. Several other important characteristics of human vision, such as subthreshold summation, contrast masking, orientation
masking and the effects of mean luminance, could have a large effect on compression efficiency and image quality. For example,
Ahumada & Peterson (1992) measured the visibility of DCT blocks and found that the 2-component basis functions were
slightly less visible than expected, which is likely due to the oblique effect. They point out that the oblique effect is probably
offset a bit by probability summation of the 2 components. To create optimal quantization matrices we need to pay more
attention to models of human vision and the ultimate imaging system.

Since so much work has already been done on measuring the contrast sensitivity function under a wide variety of
conditions, a useful first step in incorporating HVS models would be to connect the CSF to the visibility of the DCT basis
functions. The contrast sensitivity function relevant to a small grating patch is approximately:

CSF(f) = 100*f-Sexp(-.13*f) (26)
where f is measured in c/deg. This CSF is about a factor of two lower than the one discussed by Klein & Levi (1985), which is

reasonable given the small patch size. The lowest spatial frequency basis function consists of only 1/2 cycle of a grating. The
highest spatial frequency has 3.5 cycles, but because of the envelope only about two cycles are visible.

The high spatial frequency falloff of Eq. 26 is about 1 db per c/deg. Thus for every decrease by 6 c/deg the CSF increases by
a factor of 2. For spatial frequencies of 52, 46, 40, 34, 28, 22, 16, 10, and 4 c/deg the CSF is .8, 1.7, 3, 7, 14, 27, 50, 86, 118
respectively. The peak is at f=.5/.13 = 3.8 c/deg (see Klein & Levi (1985) for the derivation). The sensitivity at the peak is 120
so a 4 c/deg grating of about .8% contrast would be at threshold.

In order to connect the CSF to the threshold of a DCT basis function an assumption must be made about the visibility of
the basis functions that are the product of two sinusoids. This product can be written as the sum of two sinusoids:

cos((i+.5)mn/8)*cos((j+.5)nn/8) = .5(cos((im+jn+.5(m+n))n/8) + cos((im-jn+.5(m-n))x/8). 27
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If n<<m then the two components will lie close to each other. In that case, a spatial frequency mechanism that is centered
between the two components will summate them. For the following calculation, we assumed an orientation tuning with a full
bandwidth at half maximum of about 30 deg. We thank Ahumada & Peterson (1992) for reminding us of the role of orientation
tuning in this application. In terms of the frequencies, m and n, the orientation tuning function (OTF) that was used was:

OTF = exp(-9.5(m/n)2) for m<n (28)
ad  OTF = exp(-9.5(n/m)?2). for n<m (29)

This Gaussian shape for the tuning function is not correct. The effects of probability summation over space produces a tuning
function that is closer to a double Gaussian with a very narrow central peak (Stromeyer & Klein, 1975). For present purposes the
simpler function given by Eqs. 28 and 29 will be used. If the calculated OTF is less than .5, then instead of using a detection
mechanism centered between the two components, one would center the mechanism on one of the components and the OTF
would equal .5, since that is the strength of one component in Eq. 27. Consider for example the case of m=1, n=7. Eq. 27
becomes:

cos((i+.5)n/8)*cos((j+.5)7n/8) = .5(cos((i+7j+4)n/8) + cos((-i+7j-3)n/8). (30)

For this case, Eq. 28 implies the orientation tuning function is 2‘cxp(-9.5(1/7)2) = 1.65. This would be the factor by which
thresholds are reduced. If m>1 or m=1 and n<3 the two components are too far apart to be summated well, so the the optimal
mechanism is one centered on one of the components giving OTF=1. The threshold of a general DCT basis function other than
m=n=0 on a mid-level uniform background of 128 is given by:

for m=0 or n=0 thresh=1/(Norm(m,n)*CSF(f)) (31)
for m>0 and n>0  thresh(m,n) = 1/(OTF*Norm(m,n)*CSF(f)). 32

The normalization was given earlier (Eqs. 1 & 2): Norm(0,n)=Norm(m,0) = 2-2-5 and Norm(m,n) = 2-2. Finally, the
quantization matrix is given by:
quant(m,n) = MAX{ 2*thresh*128 , 2040} (33)

where the Maximum function is used since there is no need for quant(m,n) to ever exceed 2040 since the coefficients to be
quantized can not exceed 1020. The factor of 2 in Eq. 33 is the same factor discussed in Eq. 20. The factor of 128 is needed to
convert from contrast units to image digital units where the background luminance is at level 128.

By combining Egs. 27 - 33 we are able to make predictions for the quantization matrix once we specify the spatial
frequencies of the basis functions. Table 4 shows three quantization matrices for pixels sizes of 2, 1.5 and 1 min/pixel.

10 13 12 13 14 16 19 22 10 13 12 14 17 21 26 34 10 12 14 19 26 38 57 86

18 17 18 18 17 17 19 17 18 20 22 22 25 29 18 21 28 35 41 54 76
18 19 21 24 28 33 19 22 26 32 40 51 25 32 4 63 92 136
20 23 26 30 35 25 29 36 44 56 41 54 75 107 157
25 28 32 38 34 41 50 63 70 95 132 190
32 36 42 48 59 72 125 170 239
41 47 70 85 227 312
53 103 419
2.0 min/pixel 1.5 min/pixel 1.0 min/pixel

Table 4 Quantization matrices, Quant(m,n), based on the contrast sensitivity function.

The spatial frequency for Quant(m,n) is f = 30(m2 + n2)-3/(8*pixel_size). Thus for a pixel size of 1.5 min, the lowest frequency
is 30/(8*1.5) = 2.5 c/deg. Since the quantization matrices are symmetric only the upper half of each matrix is shown.

There are a number of interesting things to note about these quantization matrices.

1. The DC component has been chosen to be fixed at 10. Since the DC term can range from O to 2040 (see Table 2) a
quantization level of 10 means that there can be 204 DC steps. At a mid grey level of 128 each step is about 1%, which is
appropriate to the human visual system's sensitivity to an edge. The quantization level of 10 is slightly lower than the
quantization of the lowest non-DC term. This is to be expected since the normalization of the DC term is V2 lower than that of
the lowest spatial frequency.

2. In comparing the values of Quant(0,n) to Quant(1,n) one notices an unusual pattern. For n<5, Quant(0,n) <Quant(1,n)
However, the pattern is reversed for n=6 and 7. Why should this be so? For the lower values of n the value of Quant(0,n) will be
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